

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

COST ESTIMATION OF POST PRODUCTION
SOFTWARE SUPPORT IN GROUND COMBAT SYSTEMS

by

Christopher J. Cannon

September 2007

 Thesis Co-Advisors: Daniel Nussbaum
 Gregory K. Mislick

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Cost Estimation of Post Production Software
Support in Ground Combat Systems
6. AUTHOR(S) Captain Christopher J. Cannon

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
 Weapon systems and programs are becoming increasingly more dependent on software as a critical technology for
the success of the programs. Along with this dependence on performance, the costs associated with software are
becoming an increasing share of the life cycle costs of these weapon systems and programs. Life cycle software costs
are divided into two phases, development and maintenance. There are numerous popular models to aid developers
and independent estimators in predicting costs and schedules for software development. Some of these models are
open source, many others are proprietary. These models are based on research performed on existing software
systems and historical data.
 However, for software maintenance, there are far fewer models, research efforts, or collected data sets. The
Army’s term for software maintenance is post production software support. This thesis describes how this support is
currently funded, performed, and estimated. The model presented could be adopted to manage support of Army
ground combat systems.
 This thesis is furthers the understanding of the software maintenance support costs associated with weapon
systems. In addition to specific results on ground combat systems presented, the thesis provides insight into
maintaining other large software-dependent systems and recommendations on further research in the field.

15. NUMBER OF
PAGES

91

14. SUBJECT TERMS Cost Estimation, Post Production Software Support, Future Combat System,
3-parameter Gamma Distribution, System Evaluation and Estimation of Resources – Software
Estimation Model (SEER-SEM)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

COST ESTIMATION OF POST PRODUCTION SOFTWARE SUPPORT IN
GROUND COMBAT SYSTEMS

Christopher J. Cannon

Captain, United States Marine Corps
B.S., Carnegie Mellon University, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Christopher J. Cannon

Approved by: Dr. Daniel Nussbaum
Thesis Co-Advisor

Gregory K. Mislick
Thesis Co-Advisor

James N. Eagle
Chairman, Operations Research Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Weapon systems and programs are becoming increasingly more dependent on

software as a critical technology for the success of the programs. Along with this

dependence on performance, the costs associated with software are becoming an

increasing share of the life cycle costs of these weapon systems and programs. Life cycle

software costs are divided into two phases, development and maintenance. There are

numerous popular models to aid developers and independent estimators in predicting

costs and schedules for software development. Some of these models are open source,

many others are proprietary. These models are based on research performed on existing

software systems and historical data.

However, for software maintenance, there are far fewer models, research efforts,

or collected data sets. The Army’s term for software maintenance is post production

software support. This thesis describes how this support is currently funded, performed,

and estimated. The model presented could be adopted to manage support of Army

ground combat systems.

The major contribution of this thesis is furthering the understanding of the

software maintenance support costs associated with weapon systems. In addition to

specific results on ground combat systems presented, the thesis provides insight into

maintaining other large software-dependent systems and recommendations on further

research in the field.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OUTLINE..1
B. OBJECTIVE ..1
C. BACKGROUND ..2

II. DATA AND METHODOLOGY ..11
A. DATA SET..11
B. VARIABLE SELECTION AND VALIDATION12
C. METHODOLOGY ..15

III. ANALYSIS ...17
A. T-TESTS ...17
B. ANNUAL AMOUNTS...18
C. DATA DISTRIBUTION..23
D. WEAPON SYSTEM DATA..30

IV. CONCLUSIONS AND RECOMMENDATIONS...35
A. SUMMARY OF FINDINGS ...35
B. SPECIFIC RECOMMENDATIONS...37
C. RECOMMENDATIONS FOR FUTURE RESEARCH.............................40

APPENDIX A...43

APPENDIX B ...45

APPENDIX C...47

APPENDIX D...51

APPENDIX E ...53

APPENDIX F ...55

LIST OF REFERENCE ..67

INITIAL DISTRIBUTION LIST ...71

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. A sample neural network. ..14
Figure 2. Adjusted t for varying sample size and variance ...17
Figure 3. Annual Totals of TACOM Weapon Systems. ...18
Figure 4. Adjusted Annual Totals of TACOM Weapon Systems...................................20
Figure 5. Annual Medians of TACOM Weapon Systems...22
Figure 6. 3-parameter Gamma distribution vs. Empirical CDF.24
Figure 7. Small values outside the 95% CI, but large values are well modeled by the

gamma with these values. ..25
Figure 8. The distribution is not well fit for small values, but the gamma

approximates the long right tail well. ..26
Figure 9. Small values are better fit by the transformation. ..27
Figure 10. All small values within the 95% confidence bands. ..28
Figure 11. A better fit for small values. ..29
Figure 12. Histogram of all budget lines in years 2002-2013. ..30
Figure 13. Annual Totals by Individual Weapon Systems..31
Figure 14. Annual Totals by Composite Weapon Systems...32
Figure 15. Annual Totals by Individual Weapon Sub-programs.36
Figure 16. Classification rates of Regression Tree, Neural Network, and Logistic

Regression..51
Figure 17. Sample Clementine Stream and Relative Importance of Inputs from the

Neural Network..52

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Budgeted Amounts in Thousands CY05$..21
Table 2. Performance vs. CMM Level...37

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ABBREVIATIONS ACRONYMS

AFTOC Air Force Total Ownership Costs

ATGM Anti Tank Guided Missile

ARDEC Armament Research Development and Engineering Center

CAIG Cost Analysis Improvement Group

CMM Capability Maturity Model

COCOMO Constructive Cost Model

COTS Commercial Off The Shelf

CY05$ Constant Year 2005 dollars

FCS Future Combat System

GAO Government Accountability Office

LSI Lead Systems Integrator

LCC Life Cycle Cost

LAV Light Armored Vehicle

MGV Manned Ground Vehicle

MATREX Modeling Architecture for Technology, Research, and
Experimentation

NBC Nuclear, Biological, Chemical

NCCA Naval Center for Cost Analysis

OSD Office of the Secretary of Defense

OSMIS Operating and Support Management Information Systems

OMA Operation and Maintenance

OPN Other Procurement Navy

PA&E Programs Analysis and Evaluation

PEO Program Execution Office

POM Program Office Memorandum

 xiv

REVIC Revised Enhanced Version of Intermediate COCOMO

SEI Software Engineering Institute

SLOC Source Lines of Code

SME Subject Matter Expert

SEER-SEM System Evaluation and Estimation of Resources – Software Estimating
Model

SoSCOE System of Systems Common Operating Environment

TARDEC Tank Automotive Research, Development, and Engineering Center

TACOM Tank-Automotive Command

UAV Unmanned Air Vehicle

UGS Unmanned Ground Sensor

UGV Unmanned Ground Vehicle

VAMOSC Visibility and Management of Operating and Support Costs

VBA Visual Basic for Applications

 xv

EXECUTIVE SUMMARY

The cost to maintain software is largely unknown. Historically, Post Production

Software Support (PPSS) costs are estimated using simple scalars and analogies to

previous systems. This thesis explores the relationship between the size of a software

project and the cost of maintaining the completed software over the lifetime of the

project. A data set on Army ground combat systems is analyzed. The data set contains

PPSS budgets contained in the years 2002-2013.

This thesis researches appropriate variables for analysis, interprets the data, and

comments on methodology of the analysis involved, as well as the allocated budgets.

The analysis portion conducts t-tests to make inferences about similarities in the dataset,

uses modeling software to determine the validity of the data, describes the data’s

distribution, and suggests useful metrics to make comparisons between years represented

in the data set. In the absence of statistical evidence, a few reasonable assumptions are

made based on knowledge obtained from relevant subject matter experts.

It is difficult to make valid suggestions about what the data represents for

individual weapon systems until the budgeted years are finalized and executed.

However, this thesis contains three main conclusions. First, that there is no statistical

difference in the total annual resources (adjusted for inflation) budgeted for software

maintenance on ground combat vehicles. This means that there appears to be a set annual

budget for each program. The second observation is that annual amounts spent on

software maintenance for ground combat vehicles follow a simple linear regression. As

expressed in the data, there is an estimated growth of $2.95 million dollars a year, or a

5.06% rate of growth. The third observation suggests that the more expensive software

programs supporting ground combat systems are getting an increasing share of the total

budget, leaving the smaller programs fighting for smaller shares of the allocations.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

Many people have contributed to this thesis. I would like thank my advisors,

Greg Mislick, LtCol, USMC (Ret) whose support started the process and Dr. Dan

Nussbaum, a treasure as a professor and a person. Thanks to Walter Cooper, OSD-

PA&E, whose contacts, expertise, and guidance enabled my Pentagon visit to be a very

productive experience. Thanks to John Thurman, LtCol, USA, who hosted my stay and

Corinne Wallshein, who was working on her dissertation on software lifecycle costs and

was extremely forthright in sharing her work. Thanks to Matt Kastantin, Curtis Khol,

and John McCrillis, all of OSD-PA&E, for their collective wisdom. Thanks to James

Judy, Chief of C4ISR Costing Division for the Army, Brian Fersch, and Ed Lesnowicz,

for their thoughts on this difficult problem.

I’d also like to thank Ed Andres, Bryan Dunbar, and Phil Smith for taking the

time to share their experience on engineering software for the Abrams, Bradley, and

Stryker weapons systems. Lastly, I thank my parents Joyce Cannon, a teacher who still

has lessons for me, and Dr. Thomas Cannon, Jr., who is among many things, an

inspiration.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Software not developed with maintenance in mind can end up so poorly
designed and documented that total redevelopment is actually cheaper
than maintaining the original code.

— U.S. Air Force's Software Technology Support Center, “Guidelines for
Successful Acquisition and Management of Software-Intensive Systems”
version 3.0 May 2000.

A. THESIS OUTLINE

This thesis will explore and determine the relationship between the size of a

software project and the cost of maintaining the completed software over the lifetime of

the project. This thesis researches appropriate variables for analysis, interprets the data,

and comments on methodology of the analysis involved, as well as the allocated budgets.

The analysis portion conducts t-tests to make inferences about similarities in the dataset,

compares metrics between years represented in the data set, and describes the data’s

distribution. In the absence of statistical evidence, a few reasonable assumptions are

made based on knowledge obtained from relevant subject matter experts (SMEs). The

findings suggest what the data means to budget managers. Lastly, conclusions are

summarized and specific recommendations are discussed for further research.

B. OBJECTIVE

The objective of cost estimation is to collect and analyze historical data, apply

quantitative models, techniques, tools, and databases, to predict the future cost of an item,

program, or task. The specific purpose of this thesis is to conduct initial research in the

costs associated with post production software support. Available data of current

software support is analyzed, an interpretation is made of what the data represents, and

recommendations are provided for policies and practices to obtain better data in order for

more substantial research to be performed. From the data available, a model is presented

to estimate the costs of software support for follow on systems in the same domain.

 2

C. BACKGROUND

The development of software has become an increasingly important and

expensive part of all major Department of Defense (DoD) acquisitions. Additionally, the

complete Life Cycle Cost (LCC) of software is becoming a larger share of the project’s

total budget. Therefore, the importance of managing the ongoing software development

and maintenance and the capability to calculate the costs of software maintenance is

becoming increasingly important.

There are key differences between hardware and software systems. These

differences are in their development cycles, supporting phases of management, and how

the risks of each type of system are managed. One important aspect of software

development is that software development delays cannot be mitigated by more money or

resources. In historical examples, a software program that falls behind in development

will never catch up. In fact, adding developers to a software program behind schedule

has been demonstrated to actually prolong development time [1].

There has been much research on the costs to develop software. There are many

models, open source and proprietary, available to help project and plan the development

process. In comparison there are few tools to help project and plan the supporting effort

needed to maintain software once it has already been fielded. When problems arise in the

weapon system’s functionality, warfighters submit requests for changes to the software

known as “hotfixes.” Software support facilities address the warfighters’ needs in the

order requested, providing new releases of software to enhance usability. When

underfunded, these facilities adjust requests and priorities in order to fix the problems that

their budgets allow.

To understand why these risks are occurring in software, it is important to define

the exact problem. Why are program managers failing to account for risks associated

with software? The situation is concisely surmised in the Navy’s Open Architecture

Computing Environment Design Guidance Version, published in 2004.

A major characteristic of today’s computing industry is the fact that the
technology base is changing and evolving rapidly. This potentially
provides great benefit in terms of a steadily improving price/performance
ratio. However, systems that are not designed to accommodate this rapid

 3

change of the technology base can be quite costly to maintain over the life
cycle. Application source code not designed for portability should be
modified, sometimes extensively, when it is ported to new networks,
computers, operating systems, middleware, etc. In some cases, the
changes can be so extensive that redesign of the system may be necessary.

Conversely, through proper use of standards and isolation layers that hide
implementation details, it is possible to design components so that
application source code can be ported across a wide variety of underlying
computing technologies. Achieving this objective requires exercising
sufficient design and implementation discipline to forego use of vendor-
unique features. This is sometimes difficult since vendor-unique features
may confer a modest or even substantial advantage in performance or in
initial cost; however, the long-term cost of repeated use of non-portable
source code to a succession of technology bases often eventually far
exceeds any initial cost savings or performance gains [2].

The Navy defines adaptability, portability, and discipline in design and

implementation as the major characteristics of cost control. The Navy’s guide is

comprehensive, but does not provide analysis of the current software environment. What

happens when a software program isn’t portable or the implementation isn’t disciplined?

Without a proper perspective it is easy to dismiss software development as non-critical

issues in a program’s development. Three recent software projects, two failures and one

success, provide insight on the importance of quality software. The Denver airport

originally scheduled to open in 1993 was delayed over 18 months at a cost of over $190

million due to software and automation delays. In 1996, the European Ariane 5 rocket on

its maiden flight was destroyed due to a software error, carrying $500 million in payload.

In contrast, the developers that maintain the on-board code for NASA Space Shuttle

experience an error rate in their code orders of magnitude less than an equivalent

commercial center. More details are available on these examples in Appendix A.

Most software support for DoD’s weapon systems is performed at Software

Engineering Centers (SEC). These centers produce technical documentation and data for

software systems. Historically they release a new version every 18 months. In reality,

they also serve as one stop shopping for many software needs dictated by their parent

organizations. This may range from providing training or IT services to writing web

pages. They provide the logistics support to ensure weapons systems are uploaded with

 4

new software. They field requests and perform maintenance typically viewed as

corrective, defective, adaptive, or enhancement. There may be problems with the original

software, or they may correct hardware deficiencies that are more efficiently addressed

with software solutions. They perform regression testing, testing the existing codes’

functionality over the range of operation, on each change they make. This testing is

performed to prevent the type of errors that led to the Adriane 5 disaster. Specifications

detailing the tests to be performed may run thousands of pages [3].

To discern what it costs to run software on a weapon system, it’s important to

look at the base case. What does it cost to run any weapon program? Typically long

term planners such as an oversight committee or programming office review the full life

cycle cost for a particular system. Life cycle costs are broken down into stages. For

hardware, the DoD 5000 acquisition model identifies these separate stages: research and

development, production, and operation and support. But for software, the phases are

development, post development software support, and post production software support.

In determining the total LCC, analysts use different estimation techniques to project the

costs in each of these phases.

For hardware items such as naval vessels, aircraft, and ground combat vehicles,

cost estimating tools have been developed over time with historical precedence.

Typically one of four techniques is employed to arrive at an estimate. The most accurate

estimates are made from extrapolations of actual data. A recent Government

Accountability Office (GAO) estimate calculated the cost for a new F-22 Raptor at $166

million [4]. This result is based upon real production data from the previous years. For

this platform in particular, adjustments were made for changes being performed to

strengthen the airframe. In a similar manner, the aircraft’s operation and support costs

can be calculated from available data. Extrapolation from actuals is the preferred

technique because it produces good estimates (low variance) and analysts can present

their figures to decision makers with a high degree of confidence.

A second technique, parametric estimates, is utilized for less mature programs.

The estimate is based on known physical and performance characteristics of the item in

question. This is applicable on many military systems such as missiles where actual

 5

production costs have been observed on properties such as length, diameter, weight, and

thrust. Parametric estimates are attractive because they can be performed quickly and are

relatively easy to interpret for anyone with a statistical or engineering background.

A third estimation technique is known as engineering build up. This method

attempts to find the sum of the costs from the breakdown of all work performed in the

construction of a hardware item. Of all cost estimation techniques, engineering build up

is the most expensive and the most time consuming to produce. However it is preferred

for some systems such as naval vessels, where the historical data on work breakdowns is

rich and each hardware unit is unique or may be constructed during unique

circumstances.

In the absence of quality data to produce extrapolations, a parametric estimate, or

build up the cost from its separate parts, the fourth technique is to make an analogy to

previous weapon systems. For example, the F-35 Lightning II has a high degree of

commonality with the F-22 Raptor. Many of the life cycle costs for the F-35 have been

based on the F-22 [5]. In fact, this was a contributing factor in awarding the contract to

Lockheed. Additionally, estimates for the Stryker, originally planned as an interim

solution, were based on previous versions of the LAV.

Historically, cost estimation of software development has proven to be a difficult

problem. There are numerous models used for software cost estimation, but they have

many similarities. Well known models base their estimates using three basic steps.

• First they attempt to define the project’s size.

• Next they aim at determining the software developers’ productivity; which
has a high degree of variability and is generally a function of available
programmers.

• Lastly, estimators attempt to determine how much a programmer costs.

When trying to correctly size a program, most models approximate project size by

counting the Source Lines of Code (SLOC). A SLOC is an executable statement as

defined in the context of the language it was written in. Blank lines, comment lines, or

lines with simply an “if” statement or an open bracket would not count.

Some models try to break down a project into a number of function points (FP).

An FP is defined as one of five types of simple function operations: input, output,

 6

inquiry, file, or interface operation. Essentially the idea is the same; how big is the

program in basic building blocks?

Analysis of historical projects has show that SLOC is not by itself a good

indicator of project length. One reason is that no developer writes a software program

using entirely new code. In some cases it may be faster and more efficient to incorporate

preexisting code. Sometimes code is divided into different categories that define the

level of effort required to write it. Such code is termed “redesigned,” “reimplemented,”

or “retest.” Redesigned code is utilized that was created elsewhere, but requires some

reengineering or test work.

SLOC = NewSize+ExistingSize× (0.4×Redesign+0.25×Reimpl+0.35×Retest)

Reimplemented code is from previous versions, rewritten to correspond to new

data requirements. The “retest” code may simply be the amount of code that undergoes

regression testing. The contractor may use purchased code known as Commercial Off

The Shelf (COTS) software. This additionally implies the need to write “glue” code

which simply incorporates COTS or other code within the final product. Finally there

will be some actual new code that was developed from scratch. As might be expected,

different predictive models end up using different labeling schemes, such as “organic,”

“embedded,” or “semi-detached.”

Typically software estimation models use simple linear formula to determine total

SLOC. For maintenance estimates, similar methodologies are used. Some analysts in the

cost estimation community do not like this approach. The data that these models base

their estimations upon may be small, from a unique domain, very different, or very

proprietary. The suspicion is that the models are over-fit and that with simple

manipulation users can produce whatever estimates they desire. For proper estimates,

analysts prefer developing models based on available data, rather than relying on

empirical scalars drawn from data that is unavailable to them.

Once the system has been appropriately sized, estimation models then make

determinations on the software’s complexity and the developer’s effectiveness to

determine productivity. Effectiveness is largely determined by the Capability Maturity

 7

Model (CMM) score, a widespread metric developed by Carnegie Mellon University’s

Software Engineering Institute (SEI). SEI was established in 1984 as a federally funded

research and development center. CMM scoring is on a five point scale. Rather than just

an evaluation, CMM is an ongoing process that has been proven to substantially increase

productivity of software development. Pioneered in the early 1990s, currently all

software companies competing for DoD contracts will have a CMM score in order to

place a bid. For complex systems such as FCS, a CMM rating of three was determined to

be the minimum in order to simply place a bid. Estimating their own software

development time is a mandatory quality assurance step contractors must accomplish in

order to initially receive any type of CMM score.

Using these rough parameters for size and productivity, the algorithms perform a

head-count on the number of developers and determine the duration and cost for the

software development. System Evaluation and Estimation of Resources - Software

Estimating Model (SEER-SEM), is the most popular proprietary model in use today. The

main advantage SEER-SEM has over other estimators is that the model comes with a

proprietary database of thousands of completed software projects. From an analyst’s

perspective, the main difference between estimating software development and software

support is that there are virtually no models, databases, or research efforts on which

software support models can be built.

The first widely used estimator was the Cost Constructive Model (COCOMO),

designed by Dr. Barry Boehm in 1981. The purpose of the model was to predict the

number of man months necessary to complete software development. The model was

constructed on data from 60 projects at TRW ranging from 20,000 to 100,000 SLOC.

The COCOMO model has been updated and is still in wide use today. While the

COCOMO model was better than any previous tool, the accuracy of the results were was

poor. A study using early versions of COCOMO found that average error was over 600

percent between predicted and actual development effort [6]. High estimation error is not

necessarily an indicator of poor estimation tools. Errors may be due to high estimation

complexity and insufficient cost control within the program. But clearly 600 percent

average error is not an acceptable standard! It has been suggested that an acceptable

 8

model would produce predicted costs within 25 percent of actual costs 75 percent of the

time [7]. The most risky software programs are usually large, complex, incorporate new

technology, or require additional integration from subcomponents. In all phases,

especially in regard to software development, FCS exhibits each of these properties. A

brief synopsis of FCS development helps to explain the importance of good software

design.

The single largest DoD project under development is the Army’s FCS. Its LCC is

estimated to exceed the LCCE of the Joint Strike Fighter. The requirements and number

of platforms continue to change, but in late 2006 the program involved new development

of 9 Manned Ground Vehicles (MGVs) mostly from the same chassis, 6 Unmanned

Ground Vehicles (UGVs), 5 Unmanned Air Vehicles (UAVs), and 4 Unmanned Ground

Sensors (UGSs). In addition to over 20 vehicles and sensors being developed with their

associated software, FCS requires an overarching architecture for communication and

integration called the System of Systems Common Operating Environment (SoSCOE).

One indicator of software complexity is the wide range of software domains to

consider. Current estimation models use different coefficients corresponding to different

types of software code (user interfaces, data-link software, crypto, UAV software, ground

manned and unmanned systems software, etc.) to estimate the final SLOC. The F-22

software development effort is metered out to 20 different contractors. Contractors have

learned that SLOC equates to money. Often contractors maintain high estimates in order

to pay for overheads that do not directly contribute to the contract. When analyzing the

software support efforts that are performed by DoD it is crucial to focus on the largest

programs. There are numerous reasons why this is the case. Like many other acquisition

activities, the smaller software programs are often better run in terms of costs,

performance, and schedule. Large software efforts invariably contain all the risky cost

multipliers of complexity, growth, and integration. Lastly, it is the large programs that

need more software support, while for smaller programs the delivered code may not have

any requests for changes or releases of new versions.

In 2006, Army Chief of Staff General Schoomaker insisted that the entire FCS

program stay within its $120 billion budget [8], yet the 2006 CAIG estimate places FCS

 9

development at $300 billion. Estimates for the LCC continue to grow and the schedule

continues to slide. A 2004 GAO report surmises the difficulties in FCS development:

At conflict are the program’s unprecedented technical challenges and time.
At a top level, the technical challenges are: development of a first-of-a-
kind network, 18 advanced systems, 53 critical technologies, 157
complementary systems, and 34 million lines of software code [9].

The program’s complexity is also displayed by the amount of subcontractors

involved in developing software for FCS, listed in Appendix B.

Determining who is writing the software is an on-going challenge, just as

determining the level of effort required to field FCS. As early as 2003, according to both

Congressional and CAIG sources, the software portion of the FCS was estimated at

totaling between 32 and 33.7 million SLOC. There are no software programs that are

close to the unprecedented size of FCS. By comparison, the Navy’s Aegis system, Air

Force’s entire F/A-22 program, and NASA’s International Space Station, each run at

about 4.1 million SLOC. This makes the total FCS software development effort

described in the Cost Analysis Requirement Description (CARD) ten times larger than

any software program the U.S. government has ever fielded. The F-22’s software design

problems are detailed in Appendix C for comparison. Past CAIG estimates have priced

FCS software development at $7-9 billion, with the software support at around $12.5

billion ($500 million a year). Given this variance in attempting to estimate production

costs, developing accurate estimates for maintenance LCC remains a major challenge.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. DATA AND METHODOLOGY

A. DATA SET

A database on Post Production Software Support (PPSS) of weapon systems

under the Army’s Tank-Automotive Command (TACOM) was provided by the Army’s

G-4, DALO-RIL (Resource Integration Division), The Pentagon. The database was

acquired for this thesis by Mr. Walt Cooper, a CAIG analyst with the Office of the

Secretary of Defense, Programs Analysis and Evaluation (OSD PA&E). It is crucial to

understand that this database represents funding requirements/projections. It is not data

of actual expenditures spent on the associated systems, which is largely untraceable with

the data collection efforts currently employed. Prior to entering this phase of the life

cycle, the software developers for each system have had largely unique funding support.

They have had different priorities from their program managers, fallen under different

program executive offices, and may have had multiple sources of funding from

supplementals, based on their contract terms, or other contingencies.

The data was contained on a Microsoft Excel spreadsheet, and needed

considerable normalizing to be useful. Program Office Memorandum (POM) and OP29

figures were represented as individual sheets. Row entries corresponded to particular

software programs. Column entries contain may fields of varying importance, most of

which contained categorical data. The most vital data fields delineated the resources

requested by the program, the amount funded (planned, not actual), which POM or OP29

of the request, year of the request, EINOMEN (a word description of the system), and a

PRON (a unique identifier containing the year and weapons system information).

For the associated weapon systems found in the TACOM database, density data

(i.e., the number of units of the system) was obtained from the Army’s Operating and

Support Management Information System (OSMIS). OSMIS density figures were

configured to annual quantities. Annual figures were obtained for the Abrams Main

Battle Tank (M1A1s, M1A2s), Bradley Fighting Vehicle Systems (M2A1, M2A2,

M3A2), Paladins (M109A6), Strykers, and Wolverines (XM104). OSMIS allows for a

 12

variety of options of data retrieval. For these purposes, the total number of vehicles in

service in a given year was retrieved by querying over the major combatant commands

and summing the results. These data were used to formulate hypotheses of whether the

number of vehicles in service had an effect on programmed software maintenance costs.

B. VARIABLE SELECTION AND VALIDATION

The TACOM PPSS database contains 49 columns of data. The bulk of analysis

was performed on the columnar data sets, namely on the planned funding amounts, year

of request, and weapon system that each software project mapped to. The validity of

discarding these columns was analyzed using SPSS (Statistical Package for the Social

Sciences) Clementine version 11.1. SPSS was chosen because it handles categorical data

well, while other software tools require transformations. Thirty-one columns displayed

singular values or contained anomalous entries such as the username of the person

entering the data, or a program identifier unique for each data point. These columns

could not be included when Clementine was run to fit a model to the data, because they

contained no real information. Based on inspection, it appeared that these remaining

columns would not be statistically useful in predicting amounts requested or funded for

software programs.

Three approaches were taken to determine if the remaining columns contained

valid information. The results of the three approaches were compared.

• First, a regression tree was run in SPSS, to determine if the column data
could predict whether the amount requested for a program fell above or
below the median for the data set. Tree models are useful to describe
some data sets because they are simple to construct and readily
interpretable.

• More powerful statistical methods were used to determine if there was
useful information contained in these apparently inadequate columns of
data. We used a neural network since they are well implemented in SPSS
and can quickly construct good models on difficult data sets where other
modeling methods fail. The weakness of neural networks is that they are
difficult to interpret, especially as the number of parameters and layers
increase.

 13

• Third, a model was created in SPSS from a logistic regression. The
regression was run to predict if each program’s requested monetary
amount would fall above or below the population median.

Regression trees can create very flexible models but are susceptible to over-

fitting. The model starts with all data points in a single node. It is an iterative process

where the data is split into successive binary branches. The branching algorithm will

attempt to partition the data using every possible binary split on every field. Typically,

the algorithm chooses to split the data into two parts, minimizing the sum of squared

deviations from the mean in the separate parts. Numerically, in each resulting node the

algorithm minimizes deviance:

()2y y−∑

The algorithm proceeds until a sensible stopping point is reached, or splits can no

longer be made.

The neural network was constructed to make the same prediction that was made

with the tree model and logistic regression: whether the program’s requested amount fell

above or below the mean. Neural networks are implemented in SPSS using 3 types of

nodes: inputs, outputs, and hidden nodes. The network consists of two sets of weighted

arcs; one set from every input node to every hidden node and a second set from every

hidden node to every output node. The value of any observation is determined by a three

step process, as depicted in Figure 1. First, the product of the input node-hidden arc

weights are summed. Next, an “activation function” is applied.

 14

xi1

xi2

xi3

x0=
1 v01

v31

z1=
ƒ(Σjvj1xij)

z0=
1

v21

o2=
ƒ(Σhwh2zh)

“Activation” function:
ƒ(t) =1/(1+e–t)

z2

w02

w12

w22

o1

w01

w11

w21

v32

v22

v11

v12

v02

Figure 1. A sample neural network.

T is computed as the summation of input node-arc weight products into each

hidden node. Last, the first step is repeated over the next set of nodes and arcs. That is,

the hidden node-output arc products are summed. The simplest neural network is one

having just two layers, input and output nodes, where the value of an observation is the

activation function applied to each input node-arc product. This is just a simple logistic

regression.

The three resulting models were used to determine if the columns contained data

for worthwhile analysis, apart from the budgeted amounts. The logistic regression

performed almost as badly the naïve model, which would be to state that amount of every

budget line is above the median. The neural network was able to predict with over 80%

accuracy which program lines would fall above the mean. However, the regression tree

actually outperformed the neural network, achieving the highest classification rate. The

reason for this is that the individual budget amounts correspond highly to four distinct

column variables which describe where the software maintenance is performed and the

size of the program. These specific results are contained in Appendix D.

 15

C. METHODOLOGY

All figures were converted into base year 2005 dollars. Inflation indices were

obtained from the FY2008 Naval Center for Cost Analysis Inflation Calculator. The

Other Procurement, Navy (OPN) appropriation element was used. Parametric and non-

parametric techniques were used to analyze the data. Student t-tests were performed to

compare the total annual amounts spent on software support. A separate calculation was

performed to compare the rate of increase in spending from year to year. The t-values

were calculated and adjusted for sample size and variance.

The fiscal year of request, descriptive name (coded as EINOMEN), unique

program identifier (PRON), amount funded, and total amount requested were extracted

from the complete data set. Microsoft Visual Basic for Applications (VBA) procedures

were written in order to sort the data, extract duplicates, and enable some non-parametric

analysis to be performed. For most support programs in the TACOM data set, there is a

stark difference between the amount funded and the amount requested. In most years, the

data set reflects that most programs received either all or none of the requested funds.

We suspect that the reasons for this are:

• The collection of programs are at different development states.
Consequently, many have other lines of funding.

• Some programs may be forecasted an amount for a given year, with the
intent to invest those funds over a number of years. This is known as a
“level of effort” support. It is acknowledged that most programs do not
receive the necessary funds projected to provide full software support to a
weapons system.

For these reasons, the amount funded is not a reliable metric for analysis,

particularly in years that have not been executed yet. This amount is analyzed, but a

higher fidelity is given to the amount of funds requested.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. ANALYSIS

A. T-TESTS

Studentized t tests were calculated to make two comparisons. T tests are utilized

to test hypotheses about what the data represents. In this case, we wanted to test whether

the annual amounts of funding had similar means and variances between years. If the

metrics were similar, it would make sense to perform additional analysis, developing a

model describing the changing budget amounts. If the metrics were proved to be not

similar, the thesis would focus on describing the differences, and interpreting what the

differences represented.

First, year-to-year comparisons were made of mean amounts requested, converted

into Constant Year 2005 dollars (CY05$) using the Naval Center for Cost Analysis

(NCCA) Inflation Calculator for FY08 Budget, Version 1, and the Other Procurement

Navy (OPN) Index. The t test required an adjustment, since the earlier reported years

appeared in fewer POMs of this data set, while middle and later years appeared in most

POMs. The smallest year group, 2002, had just 33 programs reporting, while the largest

number of programs was 72, reported in 2011. It was assumed that the variances were

heteroscedastic (or unequal), a reasonable conservative assumption given differing

sample sizes. Accordingly, the following adjustment was made:

() ()
1 2

1 2

2 2
1 2 1 1 2 2

X -X
1 2 1 2X -X

n -1 n -1X -X 1 1t= where s =
s n n 2 n n

s s+ ⎛ ⎞
+⎜ ⎟+ − ⎝ ⎠

Figure 2. Adjusted t for varying sample size and variance

Second, year-to-year comparisons were made on the rate of increase in amounts

requested. Results from both sets of t-tests are contained in Appendix E. The data

 18

suggests that there is not enough to reject the hypothesis that the mean, variance, and rate

of increase are the same from year to year. Accordingly, the next phase of the analysis

focused on modeling the annual amounts.

B. ANNUAL AMOUNTS

Analysis was performed to attempt to fit a model to the annual amounts budgets. If

the annual increase followed a predictable form, this information would be useful to

planners and professionals. A plot of the totals and a simple linear regression show the

results in Figure 3.

2014201220102008200620042002

100000000

90000000

80000000

70000000

60000000

50000000

40000000

Year

To
ta

l

Scatterplot of Total vs Year

Figure 3. Annual Totals of TACOM Weapon Systems.

The regression fit takes the following form with the resultant r-squared:

 19

2

y = 3,040,000x + 55,200,000
R = 0.596

The fit simply states that the base year is budgeted for $55.2 million CY05, with an

annual increase of just over $3 million. A good r-squared value does not necessarily

imply a good model (the model may simply over fit the data); however, a poor r-squared

is sufficient evidence of a model that does not fit the data well.

A simple second order polynomial provides a better fit and r-squared value, but

there are reasons to assume that the yearly amount is increasing at a constant rate. The

total amounts appear to ramp up in the early years and decline in the last three years of

the data set. Seventy or more programs are represented in years 2009-2012, while only

54 and 56 are reported in the last two years of the data set. Likewise, the years 2002-

2004 only have 33, 45, and 44 distinct programs reporting respectively. This is an

artifact of the data set. The POMs are from fiscal year 2003 through 2008. Year groups

in the middle are simply contained in more of these individual POMs, while early and

end years are not.

In order to create a better model predicting annual total amounts, an adjustment

must be made to account for the varying sizes. The data does not exist to make an

accurate adjustment for this difference in sample size in different years. Accordingly, an

adjusted total was derived from the data, using reasonable assumptions. Various methods

were attempted. Adding the median for each perceived missing value had no effect on

the resulting linear regression. Adding the mean resulted in a severe distortion. The

totals between the year 2002 and the year 2011 are not that different. It appears that both

years have many of the same expensive efforts budgeted. The means, however, are quite

different, since 2011 has over twice the amount of reporting programs. The most

tractable model takes the following form:

()max x .625y = n n X + X−

 20

Where maxn is the maximum number of reported programs in all years, xn is the

number of reported programs in the given year, .625X is the 62.5th percentile of the given

year, and X is the previously calculated total amount for the year. The resulting plot of

adjusted annual totals is depicted in Figure 4.

2014201220102008200620042002

100000000

90000000

80000000

70000000

60000000

Year

Co
rr

To
ta

l

Scatterplot of Adjusted Total vs Year

Figure 4. Adjusted Annual Totals of TACOM Weapon Systems.

The result is a reasonable approximation of the form the data would take, if all reported

data from the early and late years was available. The linear regression is essentially the

same, but with better r-squared.

2

y = 2,950,000x + 58,300,000
R = 0.840

The choice of the 62.5th percentile is an admittedly arbitrary selection, but was

made with consideration of the distribution of data. The 62.5th percentile represents a

reasonable compromise where the adjustment performs some significance, yet does not

 21

perform a calculation out of scale in different years. While the 50th percentile (the

median) for this parameter had no effect, larger values such as the 75th percentile

completely distorted the annual totals. The reason for this is that the data follows a

different distribution for different years. For some years, the 75th percentile falls about

the mean, while for others it does not. Table 1 depicts annual totals, means, and the 50th,

62.5th, and 75th percentiles. Shaded cells correspond to values above the mean.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Total 44,221 54,469 124,211 123,488 68,707 71,001 81,047 94,439 84,995 87,051 73,998 74,922
Mean 1,340 1,210 2,700 2,205 1,165 1,224 1,266 1,330 1,214 1,209 1,370 1,338
X.5 112 102 103 118 115 150 151 163 188 215 233 264

X.625 370 319 257 233 209 210 211 235 336 357 634 932
X.75 1,119 1,089 1,501 1,100 877 953 1,649 1,415 992 1,884 2,087 1,996

Table 1. Budgeted Amounts in Thousands CY05$.

In the first six years of the data set, the 75th percentile falls below the mean, but

for five of the last six years the 75th percentile is above the mean. The reason for this

change is that the median changes dramatically between years. Between 2002 and 2013,

the annual budgeted median doubles, as depicted in Figure 5.

 22

2014201220102008200620042002

280000

260000

240000

220000

200000

180000

160000

140000

120000

100000

Year

M
ed

ia
n

Scatterplot of Median vs Year

Figure 5. Annual Medians of TACOM Weapon Systems.

The expected median value is well fit for the database using a third degree

polynomial. However, there is no fundamental reason to believe that a third degree

polynomial underlies the budgeting problem.

3 2

2

y = -62.058x + 375120x - 8E+08x + 5E+11
R = 0.9897

As was discussed earlier, the suspiciously high r-squared suggests that the plotted

medians is over fit by the polynomial function. However, this distribution is reasonably

well described with other functions, such as the exponential, which also fits the

distribution better than a linear model. The implications of the median are discussed in

Chapter IV.

 23

C. DATA DISTRIBUTION

Developing a distribution that describes a dataset’s characteristics can be a useful

tool in determining what the data represents. After analyzing different functions for

individual year groups, it was determined that the gamma distribution was the most

informed choice of model. The gamma distribution is typically used to model

observations such as rainfall frequency [10], mean time to failure, and other lifetime or

survival distributions. The shape parameter affects the steepness and general form of the

distribution. For small values of the shape parameter, the distribution is extremely

skewed. For large values, the distribution becomes approximately normal. The scale

parameter impacts the spread of the distribution. Small values will result in a model

representing data that is close together. For larger values, the distribution is more spread

out. The 2-parameter gamma distribution has expected value and variance of the

following form:

() () 2E X V Xρβ ρβ= =

In the equations ρ is the shape parameter and β corresponds to scale. With

threshold as a third parameter, the expected value simply adds the threshold value to the

ρβ product. This allows for a better fit of the data. Threshold has no effect on the

variance.

 Figure 6 depicts one of the best fits for a 3-parameter gamma to the empirical

cumulative distribution function (CDF) of a particular year, the year 2013.

 24

1000000080000006000000400000020000000

100

80

60

40

20

0

2013

Pe
rc

en
t

Shape 0.3994
Scale 3224818
Thresh 50025
N 56

Empirical CDF of 2013
3-Parameter Gamma

Figure 6. 3-parameter Gamma distribution vs. Empirical CDF.

The plotted track appears to follow the empirical distribution fairly well. There

are numerical methods to determine goodness of fit, but for this instance it is more easily

interpreted by analyzing other attributes of the data set. One such metric is the

probability plot.

 Figure 7 depicts the probability fit of the same gamma function to the dataset

represented in 2013. The distribution parameters, found in the legend, remain the same

as in Figure 6.

 25

100000000100000001000000100000100001000100

99.9
99
95
90
80
70
60
50
40
30

20

10

5

3

2

1

2013 - Threshold

Pe
rc

en
t

Shape 0.3994
Scale 3224818
Thresh 50025
N 56
AD 0.986

Probability Plot of 2013
3-Parameter Gamma - 95% CI

Figure 7. Small values outside the 95% CI, but large values are well modeled by the
gamma with these values.

The probability plot highlights three key features of the data set that are not

readily apparent from the empirical CDF plot. First, a large percentage of the data values

are small and the gamma distribution overestimates the amount. This is indicated by the

number of red dots falling below the lower 95% CI band. Second, while it appears that

the model remains close for middling values, the model performs badly for this portion of

the data. This is indicated by the value approaching and breaching the upper 95% CI

band near the 50th percentile. Third, the data set does not appear to be normal or

approximately normal. This fact is apparent by the slight ‘S’ shape that the distribution

of red dots takes.

 These indicators of what form the data takes are reinforced by another view of the

data, a simple histogram in Figure 8.

 26

80000006000000400000020000000

100

80

60

40

20

0

2013

Fr
eq

ue
nc

y

Shape 0.3994
Scale 3224818
Thresh 50025
N 56

Histogram of 2013
3-Parameter Gamma

Figure 8. The distribution is not well fit for small values, but the gamma approximates
the long right tail well.

The high left-hand peak overestimates what the histogram displays. This

reaffirms what the probability plot suggested, that the selected model is inaccurate for

predicting the number of small values. The right tail of the distribution highlights the

source of the problem. The model has made a computational trade off in the heavy left

tail, so that it will fit the long right tail. In order to discover a distribution that provided a

better fit, the data was transformed with the logarithmic function.

Data transformations are typically performed for one of three reasons: failures of

normality, linearity, or homoscedasticity. Also, data transformations are usually needed

to prepare for regression analysis. For regression analysis to be valid, the data must

follow a normal distribution (expected mean and variance), be linear (a linear function

can be applied to the data to predict an outcome), and homoscedastic (data in the sample

have equal variances). However, we are not comparing the budgeted amounts in the data

set to a predicted amount. In this case, the transformation was performed because the

 27

data is out of scale with itself. In each individual year, there are many small values, and

the spread of values is orders of magnitude apart. Figure 9 shows the plot of the

transformed data, with the resulting gamma model and empirical CDF.

8.07.57.06.56.05.55.04.5

100

80

60

40

20

0

C13

Pe
rc

en
t

Shape 1.699
Scale 0.5468
Thresh 4.583
N 70

3-Parameter Gamma
Empirical CDF of Log 2013

Figure 9. Small values are better fit by the transformation.

The prediction parameters in the legend have changed, which should be expected.

The graph is not as aesthetically pleasing as the empirical CDF of the unaltered data.

There appear to be larger differences between the given data and predicted distribution.

However, analysis of the probability plot and histogram reveal this to be a better

informed model. Figure 10 depicts the probability plot.

 28

10.01.00.1

99.9

99
95
90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

C13 - Threshold

Pe
rc

en
t

Shape 1.699
Scale 0.5468
Thresh 4.583
N 70
AD 1.026

3-Parameter Gamma - 95% CI
Probability Plot of Log 2013

Figure 10. All small values within the 95% confidence bands.

Virtually all of the observed data points fall within the 95% CI. The model

performs considerably better for smaller values. In the untransformed histogram, the

high peak for low values overestimated what the histogram displays. This reaffirms what

the probability plot suggested, that the selected model is inaccurate for predicting the

number of small values. While the gamma probability plot on the raw data performs well

on large values at the expense of predicting small values well, the gamma on the

transformed data has made a trade-off in the opposite direction. This is depicted in

Figure 11.

 29

111098765

20

15

10

5

0

C13

Fr
eq

ue
nc

y

Loc -0.3658
Scale 0.5060
Thresh 4.584
N 70

3-Parameter Loglogistic
Histogram of Log 2013

Figure 11. A better fit for small values.

It is possible to fit a distribution to each year represented in the TACOM

database. However, after performing separate fits on a few years contained in the dataset,

it was determined that this is not a valid analysis. The empirical distribution for 2013

was chosen because it was one of the best fits of the available data. While the 3-

parameter gamma fits the year 2013 well, the distribution performed poorly on other

years. It was observed that other distributions, such as the 3-parameter logistic and 3-

parameter lognormal, provided better fits for some individual years. Results of attempts

to find 3-parameter gamma fits for the individual years are contained in Appendix F.

Fitting a distribution for one year did not yield any useful information in attempting to fit

a successive year. This analysis yielded no suggestions as to what is the distribution of

data in years outside the data set, other than it would most likely be best fit by one of the

many models used. Fitting a distribution for the entire data set performed more poorly

than any of the individual years. The reason for this lack of fit is fairly interpretable.

 30

Since the medians are different for individual years, it is expected that the distributions

are indeed different. We shouldn’t expect to find a better distribution to the entire data

set, since each individual year has a heavy left tail. Combining the data only exacerbates

this fact, as show in Figure 12.

105000009000000750000060000004500000300000015000000

400

300

200

100

0

Budgeted Amount CY05$

Fr
eq

ue
nc

y

Histogram of All Budget Lines 2002-2013

Figure 12. Histogram of all budget lines in years 2002-2013.

D. WEAPON SYSTEM DATA

As previously displayed in Figure 5, the medians are different between years and

are changing at a predictable rate. Fitting a distribution to the entire data set loses this

sophistication. Most of the unique PRONs in the database map to a specific ground

combat system, as described in the EINOMEN field. By combining these budget lines,

we can chart yearly budgets for the associated weapon systems. The resulting annual

budget by individual weapon system is depicted in Figure 13.

 31

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

35000000

30000000

25000000

20000000

15000000

10000000

5000000

0

Year

Bu
dg

et
 P

ro
gr

am
 T

ot
al

s
CY

05
$

M2A1
PALADIN
WOLVERINE
M1A2
STRYKER
M2A2
M1A2 SEP
M1A1
ALL OTHERS

Variable

Annual Totals by Individual Weapon System

Figure 13. Annual Totals by Individual Weapon Systems.

The “ALL OTHERS” data field corresponds to a large share of mostly small

budgeted systems that do not correspond to a specific platform. Largely, these are NBC

systems, munitions programs, fire control systems not associated with specific platforms,

threat warning devices, and joint effects modeling programs. As has been stated before,

there is evidence suggesting that the annual amounts allocated to each weapon system are

dependent on each other. However, the plot in Figure 13 does little to suggest a

dependence relationship between any of the weapons systems. Many of the programs,

M1A1, M2A1, M2A2, Wolverine, are essentially flat. This reflects a “level of effort”

budgeting process. This means that weapon systems are given a predetermined level of

funding, without regard of the estimated work to be accomplished or other predictive

measures. Otherwise, there are not many comparisons that can be made within the data

in the way it is presented. However, a few inferences can be made, based on

conversations with SMEs.

 32

It was learned that the M1A2 and M1A2 SEP programs are essentially the same

system. Many of those budgeted programs simply changed names in 2005. Accordingly

the programs have been combined. The Paladin is the most costly single system in the

data set and it leads by a large margin. After talking with several software maintainers, it

is their opinion that the Paladin is the highest priority software system. The suspicion is

that the Paladin receives the budget it requests, and that other systems have their budgets

reduced as a consequence. Accordingly, the Paladin has been combined with the “ALL

OTHERS” data line. The result from these two changes is depicted in Figure 14.

20
13

20
12

20
11

20
10

20
09

20
08

20
07

20
06

20
05

20
04

20
03

20
02

60000000

50000000

40000000

30000000

20000000

10000000

0

Year

Bu
dg

et
 B

Y
05

$

M2A1
PALADIN + OTHERS
WOLVERINE
M1A2 SUM
STRYKER
M1A1
M2A2

Variable

Annual Totals by Composite Weapon Systems

Figure 14. Annual Totals by Composite Weapon Systems.

It is important to reinforce that the data necessary to support these assumptions is

not contained in this thesis. These inferences were made based on reasonable

assumptions and conversations with SED professionals. The resulting picture creates

strong suggestions about what the data represents. The M1A2SUM is relatively flat.

Stryker budgeting, which doesn’t appear until 2007, appears to also flatten in the out-

 33

years. It appears that by 2012, it has been determined that the Stryker and M1A2

programs will be funded at the same amount. Lastly, the combined Paladin/All Others

summation follows a much more predictable pattern than either individual data plot in

Figure 13. This suggests that there is in fact a relationship between the two. The

suspicion is that Paladin, being the top priority, receives the desired amount of funding,

while these other smaller systems suffer the fallout. For many reasons, there is not

enough evidence to suggest this is a definitive conclusion. The budgets for the later years

in the database, where Paladin funding decreases and All Others increase, have not been

finalized. The 155mm Crusader, which was designed to replace the Paladin, was

canceled in 2002. It is possible that the planned decreases in Paladin funding were

intended to be sourced to the Crusader. It is difficult to make valid suggestions about

what the data represents for individual weapon systems until the budgeted years are

finalized and executed.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

IV. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY OF FINDINGS

The first observation from our analysis of the data is that there is no difference, on

a year-to-year basis adjusted for inflation, of the total resources budgeted for software

maintenance for ground combat vehicles. This means that there appears to be a set

budget for software maintenance for ground combat vehicles.

The second observation from our analysis of the data is that when the annual

amounts spent for software maintenance for ground combat vehicles are adjusted for

inflation by converting them to constant year dollars, these total amounts follow a simple

linear regression, and the level of effort provided for overall program growth is growing

at a constant rate. As expressed in the data, this is estimated growth is $2.95 million

dollars a year, or a 5.06% rate of growth.

The third observation contrasts with our first that there is no difference of the total

resources budgeted for software maintenance for ground combat vehicles. That is, within

a given year, there are stark differences in the amounts that different programs are

allocated. It appeared that, on an annual basis, the budgeting offices have different

priorities for the different weapon systems, and these priorities show up strongly in the

amounts allocated to each. This is evident from two metrics which describe the data.

First, it’s clear that specific software intensive systems require much more funding, as

shown in Figure 15.

 36

Pron Totals

0

20000000

40000000

60000000

80000000

100000000

120000000

15
5M

M

H
O

W
IT

ZE
R

JO
IN

T

M
11

3/
BM

P
-2

M
1A

1
TA

N
K

M
1A

2

M
1A

2
M

A
IN

T

M
1A

2
S

E
P

M
2A

1/
M

3A
1

M
O

R
TA

R

P
AL

A
D

IN

P
AL

A
D

IN

R
EM

O
TE

S
TE

/IC
E

-R

TA
LO

N
 E

O
D

System

To
ta

l A
m

ou
nt

 C
Y0

5$

Pron Totals

Figure 15. Annual Totals by Individual Weapon Sub-programs.

The Paladin Self Propelled Howitzer, with its complex fire control system, has

many sub-programs more expensive than the entire M1A1 software support. This result

is to be expected and, with more data about each program’s development, could be

modeled in a significant way to inform decision makers of the expected support costs.

Second, the most expensive programs are receiving a larger and larger share or

the budget. This result is best described by the increasing annual median. The median

appears to increase at a polynomial rate and more than doubles between the years 2002

and 2012.

From the observations above, we concluded that the amounts allocated to

different programs within years are not independent. If the total budget follows a fixed

growth rate and there exists different priorities among the weapon systems, then

fortifying one system cannot be performed without lessening the support for another.

 37

B. SPECIFIC RECOMMENDATIONS

There are many methods to reduce the life cycle costs of software intensive

systems. Software design should consider software maintenance in mind, since that is

rapidly becoming where the lion’s share of the costs are incurred. It is recommended that

software support facilities be encouraged and funded to improve their processes. Studies

have shown that software engineering organizations with higher CMM ratings have a

smaller percentage of code that needs to be reworked, receive fewer defective reports

from consumers, and have a higher overall productivity while writing code [11].

Research from software engineering centers and some rudimentary analysis of the

database provide many areas to improve software efficiency. In 2001, General Dynamics

conducted an internal study in which quality, rework, and productivity performance were

measured against CMM. The results are detailed in Table 2.

Table 2. Performance vs. CMM Level.

 38

Both CMM level and the other benchmarks were determined by internal metrics.

In this study, the process improvements cannot be solely attributed to improving the

CMM level. Many of the organizations in the study had put in place initiatives beyond

the recommended CMM levels. SEI created a software initiative in late 2006 called

Improving Processes in Small Settings (IPSS). The leading research in the area suggests

that process improvement should be an ongoing, as needed activity for software

developers of any size. A study profiling Infotech, a level 5 CMM developer, shows how

the company was able to track productivity and size variation as a project team grew

from 11 to 45 developers over an 11 month period [12]. The study concluded that the

traceability Infotech provided served as valuable documentation for the maintenance

phase.

An example of where this is relevant to SEDs and the programs listed in the

TACOM database is in regression testing. For many software professionals, regression

testing is an automated process by definition. However, at TARDEC’s Next Generation

Software Lab, such testing is still being performed by hand. The specification to test a

new version of code that runs on one of their weapon systems runs a few thousand pages.

Most software is developed under a cost plus contract. As of this writing, this is

true of most if not all of the FCS software contract awards referenced in Appendix B.

The vast majority of this software has not been completed yet. In large part the contracts

were awarded based on the contractors past performance, software design, and other

credentials. A simple solution to reduce development costs is to allow contractors to

prototype and present their own solutions at a fixed price. The government could then

choose to buy or not to buy the software, depending on the interoperability,

maintainability, and current relevance of the system. This allows the government to

procure more competitive bids for programs throughout the software life cycle.

There are various lessons that are not supportable by the level of detail contained

in the database, but have been learned by the subject matter experts (SMEs) performing

PPSS on weapon systems today.

• Constant improvement to all software processes should be made a priority
by program offices. Studies have shown that appropriate constant focus

 39

on improving internal processes has a positive effect on software quality,
productivity, and reduces rework. Software intensive programs should
invest in individuals trained in improving the software process and retain
this knowledge for the life of the program. Some SEDs have already
trained and certified staff members in SEI’s Personal Software
Process/Team Software Process. But in speaking to the smaller software
maintainers, they do not have this level of support, and process
improvement is not seen as a priority by higher management.

• It is recommended that software support budgets be maintained
throughout the year. This would be desirable of any program of any type,
but it is more crucial in the case of software because the cost of
interruption is difficult to quantify. This is a problem that is not well
encapsulated in the TACOM database since its figures appear in yearly
increments. However, from conversations with software professionals at
the SEDs, this problem has known consequences. Software maintainers
know empirically what support can be provided, even given limited
funding. This is not a simple or linear process. Given an amount of
funding, managers make decisions on permanent hires, contracting work,
quality assurance, and support personnel both in the home office and
providing updates to warfighters. Withdrawing 25% of the budget usually
has a consequence larger than 25% of the expected effort. Software
facilities are often a convenient entity to stash or hide funds for later
withdrawal for use on other program segments. It is recommended that
software budgets be maintained and not changed, in order to allow
software engineers to better plan their processes and achieve more
efficient use of budgeting dollars.

• Recommend that the funding of software support become programmed
into the life cycle of the weapon system as a separate entity from regular
maintenance. From a software professional’s perspective, there is no clear
cut difference between software development and maintenance. Software
maintainers perform the same essential function as developers in the
respect that they release new versions of the code, typically on an 18-
month cycle. Yet custody of this critical technology is passed between
entities with little transparency. From a practical standpoint, these
divisions derive from the reality that money comes from different sources.
The manner in which the funding is provided currently, many systems are
fully funded for software only until the hardware system is actually
produced. According to the SEDs, the software maintainers must wait
until the system is a year out of production in order to receive Operation
and Maintenance (OMA) dollars. There are many program offices for
which software is a critical technology, necessary for the program’s
success. To maintain continuity in the software effort, program offices
should have a civilian manager ensure that software decisions are fully
embedded in LCC considerations. This position would also facilitate

 40

rigorous software design and implementation [13]. An additional duty for
this office is to preserve software data. Only by placing such a person in
the program office is it possible to answer key research questions about
the software’s design and portability decisions, and what funding went
into development, post development, maintenance, and improving process
improvements.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

Better data collection needs to be performed in order to make stronger inferences

about the consequences of decisions in the life cycle of software systems. This is largely

outside of the scope of an individual researcher. The Army’s OSMIS website has been

promising software data, but this effort remains under development. Even when the data

has been completed, it has been indicated that the relevant metrics (SLOC, FP,

productivity numbers, languages written) for building a data model will not be included

in the near term [14]. Navy VAMOSC has some software data, but it is not easily

retrievable, does not have a uniform breakdown, and does not contain metrics such as

SLOC, function points, or project duration which are useful for formulating models.

Valuable research could be performed analyzing the different software data methods

between Armed Services, the relevance of metrics used to track progress and justify

funding, and analyzing the effort it would require to create a Joint database on software

LCC.

It is recommended that a study be conducted to analyze the trade offs from

decisions made throughout a software program. The Aegis Combat System and Air

Force F-22 Raptor programs are both desirable candidates for analysis, perhaps

contrasted with each other. A compelling study could be performed comparing the costs

of the Stryker ATGM (with its embedded training system) against the Paladin, with its

associated costs for training, simulators, and operating and support.

Lastly, another study of interest would be to analyze and contrast the performance

of the military and contractors as lead systems integrators (LSI) for large software

programs. In recent years contractors have taken on the role of LSI. Boeing is the LSI

for FCS. The Northrop Grumman/Lockheed Martin partnership failed on the Coast

 41

Guard Deep Water program, as did General Dynamics in producing the Marines’

Expeditionary Fighting Vehicle. The use of contractors as LSIs is an interesting

development because they all involve high dollar programs incorporating cutting edge

technology. It would be of interest to analyze the maturity of software under these failed

programs, and what role, if any, software problems played in the failures.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

APPENDIX A

Historical Examples of Software Problems
The city of Denver commissioned a new airport to be opened on Halloween 1993.

One of the highlightshallmarks of the new airport was to be an highly automated baggage

system. BAE Automated Systems was awarded the $186 million contract to build the

baggage handling system and code the software. The system planned for 56 barcode

scanners, 400 radio receivers, 100 networked computers, 4,000 independently operating

carts, and 5,000 electronic sensors to implement the timely arrival of baggage. The type

and scope of these components is similar tonot unlike many distributed and networked

systems currently being procured by DoD program offices. In Denver, the baggage

system was foreseen as the primary cost saver, allowing airlines to better plan their flight

changes. However, chiefly because of the baggage system, the airport opening was

delayed 18 months until May 1995 at a cost of over $1 million a day [15]. By the time it

opened, costs in delays had exceeded the original estimate for the entire airport and t.

The baggage system was finally abandoned in August, 2005.

Perhaps the most famous software failure was the first flight of the European

Ariane 5 expendable launch system in June 1996. The Ariane 5 had not been fully flight

tested because of high confidence in modeling and simulation of flights. As a result, the

first flight carried $500 million worth of payload in satellites. Shortly after liftoff a

software error occurred. A program segment using a decimal measurement attempted to

convert the floating point number to a signed 16 bit integer. However, the input value

was out range of the software andi.e. because of the number of digits, it could not be

represented as a 16 bit integer. The run time error occurred in the active and backup

computers, which both shut themselves down. The Ariane 5 lost all attitude control,

started an uncommanded turn, and aerodynamic forces broke the vehicle apart. A

separate onboard monitor detected the breakup and ignited explosive charges to destroy

the vehicle in air about 40 seconds after lift off [16]. The code that caused the error was

reused from an earlier vehicle where the measurement couldn’t become large enough to

cause this failure.

 44

Great software successes are not as climatic as their failures. In the early 1990’s,

the on-board shuttle group became one of the first four developers worldwide to attain the

highest Capability Maturity Model (CMM) rating, Level 5. This group writes the code

for NASA’s space shuttle and is a branch of Lockheed Martin. Of 11 versions of the

code that controlled the space shuttle during this period, just 17 total errors were detected

in the code, which amounts to 420,000 lines in each version. A commercial version of

similar complexity would have had 5,000 errors [17].

This is not to suggest that certain programs are simply bad and that NASA should

be the gold standard for software programs. The Lockheed group’s annual budget at the

time was $35 million for this one software program. The group had 260 people working

in support of it. Documentation for the program ran 40,000 pages. When the code

actually runs on the shuttle, it uses four identical computers each running the same code.

Clearly DoD can’t match NASA in terms of resources. But the shuttle’s group

excellence is a clear example of benefits reaped by improving the software process. To

better understand how to improve the software process for, first we must examine how

software support is currently performed.

 45

APPENDIX B

Boeing functions as Lead System Integrator. To develop software for FCS,

Boeing has awarded contracts to Lockheed Martin [18], Raytheon [19], Science

Applications International Group (SAIC which along with Boeing serves as Lead

Systems Integrator for FCS), General Dynamics Robotics Systems (with Auburn

University) [20], General Dynamics C4 Systems [21], BAE Systems [22], Curtiss Wright

,[23], General Atomics [24] InstallShield, iRobot Corporation [25], Northrop Grumman,

United Defense L.P., Boeing Mesa [26], Lockheed Martin Missiles and Fire Control [27].

Additional software support comes from existing open source software designs such as

Modeling Architecture for Technology, Research, and Experimentation (MATREX).

Boeing has also named contractors that are developing supporting partners that will

provide software to run services such as simulations, training, sensors, and integration:

Austin Information Systems, Computer Science Corp, Dynamics Research Corp,

Honeywell Defense and Electronic Systems, Northrop Grumman Mission Systems (along

with the company’s divisions in Electronic Systems and Information Technology Defense

Enterprise Solutions), Telcordia (an SAIC subsidiary), and Textron Systems [28].

Testing support is being provided by Communications-Electronics Research,

Development, and Engineering Center [29], Fort Lewis Electronic Proving Ground. The

Army’s Program Execution Office (PEO) Simulation, Training, and Instrumentation will

also contribute by reusing existing components to help create the SoSCOE [30]. This list

is not exhaustive. Many contracts have yet to be awarded at this date. Particularly absent

are developers to build unmanned sensors, a key component that gives FCS its battlefield

edge and lethality.

 46

THIS PAGE INTENTIONALLY LEFT BLANK

 47

APPENDIX C

The history behind the F-22’s software development is instructive. It is a sizeable

program, just entering full production. Tthe F-22 program is highly software dependent.

Lastly, the F-22 displays numerous preventable problems caused by a system’s software

design. When the F-22 contract was awarded in 1991, software development written for

DoD was mandated to be written in the programming language Ada, under MIL-STD-

1815A [31] and later MIL-STD-2167A [32]. Ada is a high level language similar to

C/C++ that came about specifically as the result of a DoD study to reduce the number of

programming languages used in development of DoD software programs. The “Ada

law” was first implemented in 1987 and later revalidated as part of the annual Defense

Appropriations Acts for fiscal years 1991, 1992 and 1993. It simply stated that all DoD

software must be written in the programming language Ada, where cost effective, unless

exempted by an official designated by the Secretary of Defense. The standards were later

repealed in 1998, yet 80-85 percent of the avionics onboard the F-22 is still written and

maintained in Ada.

The F-22 has become well known for software failures. The first Raptor

prototype crashed in April 2002, after the contract had already been awarded. The cause

of the crash was determined to be pilot induced oscillations, which were attributed to a

software error [33]. The program is still behind schedule, mostly do to it’s sophisticated

software driven avionics. Even after twelve years in development, in 2003 the software

running the F-22 was crashing, on average, every three hours [34]. In late February

2007, a flight of eight F-22’s were flying from Hickam Air Force Base to Okinawa,

Japan. Due to a software bug, upon crossing the international date line all eight aircraft

dumped all computer systems. They lost all navigation, communications, and some fuel

systems. The pilots had no internal attitude reference. The flight of Raptors maintained

visual contact with their tankers and returned to Hickam, where fortunately the weather

was good. The Air Force employed “tiger teams” to debug the code and the software

problem was fixed within 48 hours.

 48

The full procurement price on the Raptor is estimated at $34 billion, with an

additional $28 billion sunk on the aircraft’s research, development, and testing. The

planned buy is 183 aircraft, $339 million each based on total program costs. The

incremental cost for a new Raptor is $120 million, but current required changes are

expected to raise the cost to $166 million [35].

The Aegis Combat System is an interesting case study for many reasons. It is a

long standing program, highly software intensive, has been installed on numerous

platforms, and has been extremely successful in terms of operational effectiveness and

suitability. In the 1960s the U.S. Navy began development on a program to defend its

ships against anti-missile attacks. The program was called Advanced Surface Missile

System, but was renamed Aegis in 1969. The Aegis is currently employed on 107

surface platforms predominately for the United States, but also for the Japanese,

Norweigan, Spanish, and South Korean Navies. From a software perspective, the Navy

program offices have recently made decisions over the Aegis’s life cycle which contrast

with those of Army and Air Force programs.

For many programs it is difficult to determine when development stops and

maintenance begins. One program that illustrates this consideration is the Stryker

Armored Vehicle. Formerly known as the Interim Armored Vehicle, the Stryker contract

was awarded to General Motors/General Dynamics Land Systems (GM GDLS) in

November 2000. GM GDLS was a joint venture between General Motors, Electro-

Motive Division and General Dynamics Land Systems Division, specifically created for

the sole purpose of developing the Stryker vehicle. The Stryker was envisioned as an

interim platform to bridge the gap between legacy armored personnel carriers and a new

platform or family of vehicles for FCS. This is evidenced by the acquisition plan of the

weapon system, which was not held to normal procurement and production regulations.

Because of this, many short-sighted production decisions were made to reduce short term

costs. For example, the Stryker initially had only two variants, the Infantry Carrier

Vehicle and the Mobile Gun System. By 2007, the Stryker had expanded to 10 different

variations, the new ones being the Reconnaissance Vehicle, Mortar Carrier,

Commander’s Vehicle, Fire Support Vehicle, Anti Tank Guided Missile (ATGM),

 49

Engineer Support Vehicle, medical Evaluation Vehicle, and NBC (Nuclear, Biological,

Chemical) Recon Vehicle. It is significant that the Mobile Gun System variant was the

second variant envisioned, but the last to be delivered. Such development issues are not

uncommon with weapon programs that utilize software dependent advanced fire control

systems. One such system is the Army’s 155mm self propelled howitzer is the M109A6

Paladin. According to the software support activity for the Stryker the ATGM variant

has four times the software as the others, with over 1.2 million SLOC.

Since it was developed as an interim vehicle, the program office did not buy the

initial source code from GM GDLS. Software for the Stryker chassis dynamics was

written by General Motors Defense. Software for the fire control system was written by

General Dynamics. The two contractors had different development teams working with

different standards. Complicating matters further, GDLS purchased GMD. Much of the

documentation on the chassis dynamics software was lost during this transition.

Although they continue to purchase the old code, the software support facilities will

likely never acquire the full software build for the Stryker.

The Stryker is still in production. The Army currently has over 1,780 Strykers

and the current requirement plans for 2,691 vehicles incorporated into seven Stryker

Brigade Combat teams.[36] Some of the variants are five years removed from their

initial operating capability. While the program is still receiving full funding for

production, undoubtedly software maintenance is being already performed on the various

Stryker systems.

The survivability of the interim and objective force’s lightweight vehicles

(Stryker and FCS) is heavily dependent on information dominance. This has been

referred to as “trading armor for information.” The ability to achieve real full-spectrum

information dominance and lethality cannot be guaranteed, especially within the

aggressive deployment schedule of FCS, hence the continued need for continually

updated legacy systems.[37]

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

APPENDIX D

Sample SPSS Clementine Results
Clementine version 11.1 was used to analyze the validity of the categorical data in

the TACOM PPSS spreadsheet. It was determined whether we could simply predict if

the budgeted amount fell above or below the median of the data set, from the remaining

columns of data. Output from Clementine is depicted in Figure 16. Three models were

used, a neural network, a regression tree, and a logistic regression (left, center, and right

respectively).

Figure 16. Classification rates of Regression Tree, Neural Network, and Logistic
Regression.

 52

The results were as follows. The logistic regression performed almost as badly as

the naïve model, which would simply predict that every budgeted amount falls above the

median. The simple regression tree actually outperforms the neural network. This

suggests that a few variables are a better predictor for the median than a complex

formulation. After inspecting the values the regression tree branches to form leaf nodes,

it appears that the location of the maintainers, funding, or supported activity. This data is

contained in many redundant columns with names such as FIA_WSS_CODE and

ORG_CONT_CODE, depicted in Figure 17. This result is supported by an inspection of

the relative importance of the neural network variables, where many of them have no

appreciable value to the model.

Figure 17. Sample Clementine Stream and Relative Importance of Inputs from the Neural
Network.

 53

APPENDIX E

Tables of P-Values from T-Tests
 The first table contains p-values comparing annual means between years

contained in the data set. No two years are found to be statistically different at the 95%

level. The second table compares the compounded percentage change between years.

Year pairs that were found to have a greater than 5% change are highlighted.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

TOTAL 44,220,765 54,469,364 62,961,359 65,248,460 68,706,764 71,000,918 81,046,912 94,438,557 84,995,172 87,050,875 73,998,030 74,922,154
COUNT 33 45 44 54 57 58 64 71 70 72 54 56
MEAN 1,340,023 1,210,430 1,430,940 1,208,305 1,205,382 1,224,154 1,266,358 1,330,121 1,214,217 1,209,040 1,370,334 1,337,896

P-VALUES 2002 1.0000 0.7907 0.8675 0.7893 0.7800 0.8063 0.8748 0.9832 0.7823 0.7711 0.9486 0.9963
2003 1.0000 0.6623 0.9962 0.9908 0.9743 0.8941 0.7779 0.9926 0.9972 0.7052 0.7578
2004 1.0000 0.6621 0.6512 0.6729 0.7344 0.8366 0.6469 0.6356 0.9010 0.8460
2005 1.0000 0.9947 0.9706 0.8914 0.7768 0.9885 0.9986 0.7051 0.7570
2006 1.0000 0.9642 0.8825 0.7649 0.9823 0.9926 0.6913 0.7440
2007 1.0000 0.9163 0.7942 0.9795 0.9683 0.7177 0.7731
2008 1.0000 0.8735 0.8911 0.8784 0.7942 0.8539
2009 1.0000 0.7638 0.7498 0.9205 0.9842
2010 1.0000 0.9885 0.6842 0.7405
2011 1.0000 0.6694 0.7257
2012 1.0000 0.9339
2013 1.0000

RATES 2002 0.0000 0.1071 -0.0323 0.0351 0.0268 0.0183 0.0095 0.0011 0.0124 0.0115 -0.0022 0.0001
2003 0.0000 -0.1541 0.0009 0.0014 -0.0028 -0.0090 -0.0156 -0.0004 0.0001 -0.0137 -0.0100
2004 0.0000 0.1843 0.0896 0.0534 0.0310 0.0147 0.0278 0.0244 0.0054 0.0075
2005 0.0000 0.0024 -0.0065 -0.0155 -0.0237 -0.0010 -0.0001 -0.0178 -0.0127
2006 0.0000 -0.0153 -0.0244 -0.0323 -0.0018 -0.0006 -0.0211 -0.0148
2007 0.0000 -0.0333 -0.0407 0.0027 0.0031 -0.0223 -0.0147
2008 0.0000 -0.0479 0.0212 0.0156 -0.0195 -0.0109
2009 0.0000 0.0955 0.0489 -0.0099 -0.0015
2010 0.0000 0.0043 -0.0587 -0.0318
2011 0.0000 -0.1177 -0.0494
2012 0.0000 0.0242
2013 0.0000

P-Values RATES
Conditional Conditional

0.05 0.05
-0.05

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

APPENDIX F

3-Parameter Gamma Distribution Graphs

120000001000000080000006000000400000020000000

100

80

60

40

20

0

2002

Pe
rc

en
t

Shape 0.3003
Scale 4295224
Thresh 50339
N 33

Empirical CDF of 2002
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2003

Pe
rc

en
t

Shape 0.3088
Scale 3754818
Thresh 50961
N 45

Empirical CDF of 2003
3-Parameter Gamma

14000000120000001000000080000006000000400000020000000

100

80

60

40

20

0

2004

Pe
rc

en
t

Shape 0.2829
Scale 4878239
Thresh 51054
N 44

Empirical CDF of 2004
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2005

Pe
rc

en
t

Shape 0.3116
Scale 3715242
Thresh 50718
N 54

Empirical CDF of 2005
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2006

Pe
rc

en
t

Shape 0.3245
Scale 3559585
Thresh 50442
N 57

Empirical CDF of 2006
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2007

Pe
rc

en
t

Shape 0.3299
Scale 3561871
Thresh 49166
N 58

Empirical CDF of 2007
3-Parameter Gamma

 56

1000000080000006000000400000020000000

100

80

60

40

20

0

2008

Pe
rc

en
t

Shape 0.3757
Scale 3289854
Thresh 30237
N 64

Empirical CDF of 2008
3-Parameter Gamma

120000001000000080000006000000400000020000000

100

80

60

40

20

0

2009

Pe
rc

en
t

Shape 0.3296
Scale 3887206
Thresh 49018
N 71

Empirical CDF of 2009
3-Parameter Gamma

90
00

00
0

80
00

00
0

70
00

00
0

60
00

00
0

50
00

00
0

40
00

00
0

30
00

00
0

20
00

00
0

10
00

00
00

100

80

60

40

20

0

2010

Pe
rc

en
t

Shape 0.3658
Scale 3199528
Thresh 43881
N 70

Empirical CDF of 2010
3-Parameter Gamma

90
00

00
0

80
00

00
0

70
00

00
0

60
00

00
0

50
00

00
0

40
00

00
0

30
00

00
0

20
00

00
0

10
00

00
00

100

80

60

40

20

0

2011

Pe
rc

en
t

Shape 0.3520
Scale 3297166
Thresh 48475
N 72

Empirical CDF of 2011
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2012

Pe
rc

en
t

Shape 0.4294
Scale 3100110
Thresh 39257
N 54

Empirical CDF of 2012
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2013

Pe
rc

en
t

Shape 0.3994
Scale 3224818
Thresh 50025
N 56

Empirical CDF of 2013
3-Parameter Gamma

 57

8.58.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log02

Pe
rc

en
t

Shape 1.146
Scale 0.7373
Thresh 4.655
N 33

Empirical CDF of log02
3-Parameter Gamma

8.58.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log03

Pe
rc

en
t

Shape 1.188
Scale 0.6806
Thresh 4.660
N 45

Empirical CDF of log03
3-Parameter Gamma

8.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log04

Pe
rc

en
t

Shape 1.169
Scale 0.6781
Thresh 4.661
N 44

Empirical CDF of log04
3-Parameter Gamma

8.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log05

Pe
rc

en
t

Shape 1.343
Scale 0.5858
Thresh 4.658
N 54

Empirical CDF of log05
3-Parameter Gamma

8.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log06

Pe
rc

en
t

Shape 1.367
Scale 0.5980
Thresh 4.656
N 57

Empirical CDF of log06
3-Parameter Gamma

8.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log07

Pe
rc

en
t

Shape 1.402
Scale 0.5974
Thresh 4.645
N 58

Empirical CDF of log07
3-Parameter Gamma

87654

100

80

60

40

20

0

log08

Pe
rc

en
t

Shape 3.166
Scale 0.3876
Thresh 4.257
N 64

Empirical CDF of log08
3-Parameter Gamma

8.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log09

Pe
rc

en
t

Shape 1.407
Scale 0.6181
Thresh 4.644
N 71

Empirical CDF of log09
3-Parameter Gamma

 58

90
00

00
0

80
00

00
0

70
00

00
0

60
00

00
0

50
00

00
0

40
00

00
0

30
00

00
0

20
00

00
0

10
00

00
00

100

80

60

40

20

0

2010

Pe
rc

en
t

Shape 0.3658
Scale 3199528
Thresh 43881
N 70

Empirical CDF of 2010
3-Parameter Gamma

8.58.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log11

Pe
rc

en
t

Shape 1.432
Scale 0.6199
Thresh 4.639
N 72

Empirical CDF of log11
3-Parameter Gamma

8.58.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log12

Pe
rc

en
t

Shape 2.119
Scale 0.5168
Thresh 4.533
N 54

Empirical CDF of log12
3-Parameter Gamma

8.58.07.57.06.56.05.55.04.5

100

80

60

40

20

0

log13

Pe
rc

en
t

Shape 1.961
Scale 0.5328
Thresh 4.599
N 56

Empirical CDF of log13
3-Parameter Gamma

 59

1000000080000006000000400000020000000

50

40

30

20

10

0

2002

Fr
eq

ue
nc

y
Shape 0.3003
Scale 4295224
Thresh 50339
N 33

Histogram of 2002
3-Parameter Gamma

1000000080000006000000400000020000000

90

80

70

60

50

40

30

20

10

0

2003

Fr
eq

ue
nc

y

Shape 0.3088
Scale 3754818
Thresh 50961
N 45

Histogram of 2003
3-Parameter Gamma

120000009000000600000030000000

100

80

60

40

20

0

2004

Fr
eq

ue
nc

y

Shape 0.2829
Scale 4878239
Thresh 51054
N 44

Histogram of 2004
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2005

Fr
eq

ue
nc

y

Shape 0.3116
Scale 3715242
Thresh 50718
N 54

Histogram of 2005
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2006

Fr
eq

ue
nc

y

Shape 0.3245
Scale 3559585
Thresh 50442
N 57

Histogram of 2006
3-Parameter Gamma

1000000080000006000000400000020000000

100

80

60

40

20

0

2007

Fr
eq

ue
nc

y

Shape 0.3299
Scale 3561871
Thresh 49166
N 58

Histogram of 2007
3-Parameter Gamma

80000006000000400000020000000

120

100

80

60

40

20

0

2008

Fr
eq

ue
nc

y

Shape 0.3757
Scale 3289854
Thresh 30237
N 64

Histogram of 2008
3-Parameter Gamma

1000000080000006000000400000020000000

120

100

80

60

40

20

0

2009

Fr
eq

ue
nc

y

Shape 0.3296
Scale 3887206
Thresh 49018
N 71

Histogram of 2009
3-Parameter Gamma

 60

80000006000000400000020000000

140

120

100

80

60

40

20

0

2010

Fr
eq

ue
nc

y
Shape 0.3658
Scale 3199528
Thresh 43881
N 70

Histogram of 2010
3-Parameter Gamma

80000006000000400000020000000

140

120

100

80

60

40

20

0

2011

Fr
eq

ue
nc

y

Shape 0.3520
Scale 3297166
Thresh 48475
N 72

Histogram of 2011
3-Parameter Gamma

80000006000000400000020000000

90

80

70

60

50

40

30

20

10

0

2012

Fr
eq

ue
nc

y

Shape 0.4294
Scale 3100110
Thresh 39257
N 54

Histogram of 2012
3-Parameter Gamma

80000006000000400000020000000

100

80

60

40

20

0

2013

Fr
eq

ue
nc

y

Shape 0.3994
Scale 3224818
Thresh 50025
N 56

Histogram of 2013
3-Parameter Gamma

 61

8.07.57.06.56.05.55.0

14

12

10

8

6

4

2

0

log02

Fr
eq

ue
nc

y

Shape 1.146
Scale 0.7373
Thresh 4.655
N 33

Histogram of log02
3-Parameter Gamma

7.87.26.66.05.44.8

14

12

10

8

6

4

2

0

log03

Fr
eq

ue
nc

y

Shape 1.188
Scale 0.6806
Thresh 4.660
N 45

Histogram of log03
3-Parameter Gamma

7.87.26.66.05.44.8

18

16

14

12

10

8

6

4

2

0

log04

Fr
eq

ue
nc

y

Shape 1.169
Scale 0.6781
Thresh 4.661
N 44

Histogram of log04
3-Parameter Gamma

7.87.26.66.05.44.8

20

15

10

5

0

log05

Fr
eq

ue
nc

y

Shape 1.343
Scale 0.5858
Thresh 4.658
N 54

Histogram of log05
3-Parameter Gamma

7.87.26.66.05.44.8

18

16

14

12

10

8

6

4

2

0

log06

Fr
eq

ue
nc

y

Shape 1.367
Scale 0.5980
Thresh 4.656
N 57

Histogram of log06
3-Parameter Gamma

7.87.26.66.05.44.8

20

15

10

5

0

log07

Fr
eq

ue
nc

y

Shape 1.402
Scale 0.5974
Thresh 4.645
N 58

Histogram of log07
3-Parameter Gamma

7.57.06.56.05.55.04.5

20

15

10

5

0

log08

Fr
eq

ue
nc

y

Shape 3.166
Scale 0.3876
Thresh 4.257
N 64

Histogram of log08
3-Parameter Gamma

8.07.57.06.56.05.55.0

20

15

10

5

0

log09

Fr
eq

ue
nc

y

Shape 1.407
Scale 0.6181
Thresh 4.644
N 71

Histogram of log09
3-Parameter Gamma

 62

7.57.06.56.05.55.0

20

15

10

5

0

log10

Fr
eq

ue
nc

y
Shape 1.699
Scale 0.5468
Thresh 4.583
N 70

Histogram of log10
3-Parameter Gamma

8.07.57.06.56.05.55.0

20

15

10

5

0

log11

Fr
eq

ue
nc

y

Shape 1.432
Scale 0.6199
Thresh 4.639
N 72

Histogram of log11
3-Parameter Gamma

7.87.26.66.05.44.8

12

10

8

6

4

2

0

log12

Fr
eq

ue
nc

y

Shape 2.119
Scale 0.5168
Thresh 4.533
N 54

Histogram of log12
3-Parameter Gamma

7.87.26.66.05.44.8

12

10

8

6

4

2

0

log13

Fr
eq

ue
nc

y

Shape 1.961
Scale 0.5328
Thresh 4.599
N 56

Histogram of log13
3-Parameter Gamma

 63

10.01.00.1

99

95
90

80
70
60
50
40
30

20

10

5

3

2

1

log02 - Threshold

Pe
rc

en
t

Shape 1.146
Scale 0.7373
Thresh 4.655
N 33
AD 1.173

Probability Plot of log02
3-Parameter Gamma - 95% CI

10.01.00.1

99

95
90

80
70
60
50
40
30

20

10

5

3

2

1

log03 - Threshold

Pe
rc

en
t

Shape 1.188
Scale 0.6806
Thresh 4.660
N 45
AD 1.709

Probability Plot of log03
3-Parameter Gamma - 95% CI

10.01.00.1

99

95
90

80
70
60
50
40

30

20

10

5

3

2

1

log04 - Threshold

Pe
rc

en
t

Shape 1.169
Scale 0.6781
Thresh 4.661
N 44
AD 2.123

Probability Plot of log04
3-Parameter Gamma - 95% CI

10.01.00.1

99.9

99

95
90
80
70
60
50
40
30

20

10

5

3
2

1

log05 - Threshold

Pe
rc

en
t

Shape 1.343
Scale 0.5858
Thresh 4.658
N 54
AD 1.482

Probability Plot of log05
3-Parameter Gamma - 95% CI

10.00001.00000.10000.01000.00100.0001

99.9

99

95
90
80
70
60
50
40
30

20

10

5

3
2

1

log06 - Threshold

Pe
rc

en
t

Shape 1.367
Scale 0.5980
Thresh 4.656
N 57
AD 1.283

Probability Plot of log06
3-Parameter Gamma - 95% CI

10.0001.0000.1000.0100.001

99.9

99

95
90

80
70
60
50
40
30

20

10

5

3
2

1

log07 - Threshold

Pe
rc

en
t

Shape 1.402
Scale 0.5974
Thresh 4.645
N 58
AD 1.160

Probability Plot of log07
3-Parameter Gamma - 95% CI

10.001.000.100.01

99.9

99

95
90
80
70
60
50
40
30
20

10

5

1

0.1

log08 - Threshold

Pe
rc

en
t

Shape 3.166
Scale 0.3876
Thresh 4.257
N 64
AD 2.116

Probability Plot of log08
3-Parameter Gamma - 95% CI

10.01.00.1

99.9
99
95
90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

log09 - Threshold

Pe
rc

en
t

Shape 1.407
Scale 0.6181
Thresh 4.644
N 71
AD 1.279

Probability Plot of log09
3-Parameter Gamma - 95% CI

 64

10.01.00.1

99.9
99

95
90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

log10 - Threshold

Pe
rc

en
t

Shape 1.699
Scale 0.5468
Thresh 4.583
N 70
AD 1.026

Probability Plot of log10
3-Parameter Gamma - 95% CI

10.01.00.1

99.9
99
95
90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

log11 - Threshold

Pe
rc

en
t

Shape 1.432
Scale 0.6199
Thresh 4.639
N 72
AD 0.977

Probability Plot of log11
3-Parameter Gamma - 95% CI

10.01.00.1

99.9

99

95
90

80
70
60
50
40
30

20

10

5

1

log12 - Threshold

Pe
rc

en
t

Shape 2.119
Scale 0.5168
Thresh 4.533
N 54
AD 0.830

Probability Plot of log12
3-Parameter Gamma - 95% CI

10.001.000.100.01

99.9

99

95
90

80
70
60
50
40
30

20

10

5

3
2

1

log13 - Threshold

Pe
rc

en
t

Shape 1.961
Scale 0.5328
Thresh 4.599
N 56
AD 0.933

Probability Plot of log13
3-Parameter Gamma - 95% CI

 65

10.01.00.1

99

95
90

80
70
60
50
40
30

20

10

5

3

2

1

log02 - Threshold

Pe
rc

en
t

Shape 1.146
Scale 0.7373
Thresh 4.655
N 33
AD 1.173

Probability Plot of log02
3-Parameter Gamma - 95% CI

10.01.00.1

99

95
90

80
70
60
50
40
30

20

10

5

3

2

1

log03 - Threshold

Pe
rc

en
t

Shape 1.188
Scale 0.6806
Thresh 4.660
N 45
AD 1.709

Probability Plot of log03
3-Parameter Gamma - 95% CI

10.01.00.1

99

95
90

80
70
60
50
40

30

20

10

5

3

2

1

log04 - Threshold

Pe
rc

en
t

Shape 1.169
Scale 0.6781
Thresh 4.661
N 44
AD 2.123

Probability Plot of log04
3-Parameter Gamma - 95% CI

10.01.00.1

99.9

99

95
90
80
70
60
50
40
30

20

10

5

3
2

1

log05 - Threshold

Pe
rc

en
t

Shape 1.343
Scale 0.5858
Thresh 4.658
N 54
AD 1.482

Probability Plot of log05
3-Parameter Gamma - 95% CI

10.00001.00000.10000.01000.00100.0001

99.9

99

95
90
80
70
60
50
40
30

20

10

5

3
2

1

log06 - Threshold

Pe
rc

en
t

Shape 1.367
Scale 0.5980
Thresh 4.656
N 57
AD 1.283

Probability Plot of log06
3-Parameter Gamma - 95% CI

10.0001.0000.1000.0100.001

99.9

99

95
90

80
70
60
50
40
30

20

10

5

3
2

1

log07 - Threshold

Pe
rc

en
t

Shape 1.402
Scale 0.5974
Thresh 4.645
N 58
AD 1.160

Probability Plot of log07
3-Parameter Gamma - 95% CI

10.001.000.100.01

99.9

99

95
90
80
70
60
50
40
30
20

10

5

1

0.1

log08 - Threshold

Pe
rc

en
t

Shape 3.166
Scale 0.3876
Thresh 4.257
N 64
AD 2.116

Probability Plot of log08
3-Parameter Gamma - 95% CI

10.01.00.1

99.9
99
95
90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

log09 - Threshold

Pe
rc

en
t

Shape 1.407
Scale 0.6181
Thresh 4.644
N 71
AD 1.279

Probability Plot of log09
3-Parameter Gamma - 95% CI

 66

10.01.00.1

99.9
99

95
90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

log10 - Threshold

Pe
rc

en
t

Shape 1.699
Scale 0.5468
Thresh 4.583
N 70
AD 1.026

Probability Plot of log10
3-Parameter Gamma - 95% CI

10.01.00.1

99.9
99
95
90
80
70
60
50
40
30
20

10

5
3
2

1

0.1

log11 - Threshold

Pe
rc

en
t

Shape 1.432
Scale 0.6199
Thresh 4.639
N 72
AD 0.977

Probability Plot of log11
3-Parameter Gamma - 95% CI

10.01.00.1

99.9

99

95
90

80
70
60
50
40
30

20

10

5

1

log12 - Threshold

Pe
rc

en
t

Shape 2.119
Scale 0.5168
Thresh 4.533
N 54
AD 0.830

Probability Plot of log12
3-Parameter Gamma - 95% CI

10.001.000.100.01

99.9

99

95
90

80
70
60
50
40
30

20

10

5

3
2

1

log13 - Threshold

Pe
rc

en
t

Shape 1.961
Scale 0.5328
Thresh 4.599
N 56
AD 0.933

Probability Plot of log13
3-Parameter Gamma - 95% CI

 67

LIST OF REFERENCE

1. “The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary

Edition” pages 25-26, Fredrick P. Brooks, Jr. Reading, MA: Addison-Wesley,
1995.

2. Open Architecture (OA) Computing Environment Design Guidance Version 1.0
(August 23, 2004) page 45 Retrieved July 2007
http://www.nswc.navy.mil/wwwDL/B/OACE/docs/OACE_Design_Guidance_v1
dot0_final.pdf.

3. Personal Visit, TARDEC Next Generation Software Lab December 21, 2006.

4. “Tactical Aircraft: DoD Should present a New F-22A Business Case before
Making Further Investments,” David M. Walker, Comptroller General of the U.S.
June 20, 2006 Retrieved July 2007
http://www.cdi.org/pdfs/GAO%20on%20F%2022%20per%20June%202006.pdf.

5. “Status of the F/A-22 and JSF Acquisition Programs and Implications for Tactical
Aircraft Modification,” Michael Sullivan and Allen Li, March 3, 2006. Retrieved
July 2007 http://www.gao.gov/new.items/d05390t.pdf.

6. Communications of the ACM 30(5) 416-429. “An Empirical Validation of
Software Cost Estimation Models.” Kemerer, C.F. (1987).

7. “Software Metrics: A Rigorous and Practical Approach” Fenton, N.E. and
Pfleeger, S.L. (1997). International Thomson Computer Press.

8. “Software Metrics: A Rigorous and Practical Approach” Fenton, N.E. and
Pfleeger, S.L. (1997). International Thomson Computer Press.

9. GAO report “The Army’s Future Combat Systems’ Features, Risks, and
Alternatives” Paul L. Francis, April 1, 2004. Retrieved July 2007
http://www.gao.gov/new.items/d04635t.pdf.

10. “Rainfall Frequency Analysis Using a Mixed Gamma Distribution: Evaluation of
the Global Warming Effect on Daily Rainfall.” Chulsang Yoo, Kwang-Sik Jung,
Tae-Woong Kim. Originally published online in Wiley Interscience
(www.interscience.wiley.cocm). Retrieved August 2007
http://www3.interscience.wiley.com/cgi-
bin/fulltext/112159729/PDFSTART?CRETRY=1&SRETRY=0.

 68

11. Table reproduced from: “How CMM Rating Impacts Quality, Productivity,

Rework, and the Bottom Line” STSC CrossTalk, Jeff King and Michael Diaz,
March 2002. Retrieved August 2007
http://www.stsc.hill.af.mil/crosstalk/2002/03/diaz.html.

12. Proceedings of the First International Research Workshop of Process
Improvement in Small Settings, 2005 Suzanne Garcia, Caroline Graettinger, Keith
Kost, Pages109-113. Retrieved August 2007
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06sr001.pdf.

13. Similar recommendations were previously suggested by Brian D. Fersch,
Operations Research Analyst, Office of the Deputy Assistant Secretary of the
Army for Cost & Economics (ODASA-CE); Networks, Information, Software,
and Electronics Costing Division Software Cost.

14. July 2007 correspondence with James M. Judy, Chief, Networks, Information,
Software & Electronics Costing (NISEC) Division; ODASA-CE.

15. “Denver Airport Saw the Future. It Didn’t Work” Kirk Johnson, New York
Times, published August 27, 2005. Retrieved July 2007
http://www.nytimes.com/2005/08/27/national/27denver.html?ex=1282795200&e
n=55c1a4d8ddb7988a&ei=5088&partner=rssnyt&emc=rss.

16. “Famous Failures of Complex Engineering Systems,” Retrieved July 2007
http://www.cds.caltech.edu/conferences/1997/vecs/tutorial/Examples/Cases/failur
es.htm.

17. “They Write the Right Stuff” Charles Fishman, Issue 6, page 95 December 1996.
Retrieved July 2007 http://www.fastcompany.com/online/06/writestuff.html.

18. “Lockheed Martin Receives $61 Million Contract for Multifunction
Utility/Logistics and Equipment Vehicle” Press release, Craig Vanbebber, June
22, 2005. Retrieved July 2007
http://www.lockheedmartin.com/wms/findPage.do?dsp=fec&ci=16902&rsbci=0&
fti=112&ti=0&sc=400.

19. “Manned and Unmanned Ground Vehicle ISR Sensors Announcement,” Press
Release, Howard Lind, February 8, 2006. Retrieved July 2007
http://www.boeing.com/defense-space/ic/fcs/bia/060201_ems_rfi.html.

20. “Auburn University Awarded Subcontract from FCS LSI,” Press Release, Sara
Borchik, September 21, 2006. Retrieved July 2007
http://eng.auburn.edu/admin/marketing/newsroom/2006/september/ausubcontract.
html.

 69

21. “General Dynamics Awarded Additional FCS Command and Control Integration

Work,” Press Release, Fran Jacques April 21, 2005. Retrieved July 2007
http://www.gdc4s.com/news/detail.cfm?prid=168.

22. BAE Systems Armament Systems Division, retrieved July 2007
http://www.na.baesystems.com/landArmaments.cfm.

23. “Curtiss-Wright Awarded Contract for Future Combat System,” Press Release,
Alexandra Deignan October 2, 2006. Retrieved July 2007 http://phx.corporate-
ir.net/phoenix.zhtml?c=81495&p=irol-newsArticle&ID=910891&highlight=.

24. “General Atomics Lands $10.7 Million R&D Contract to Develop Future Power
Systems” Press Release February 12, 2007. Retrieved July 2007
http://www.defenseindustrydaily.com/general-atomics-lands-107-million-rd-
contract-to-develop-future-power-systems-03039/.

25. “iRobot’s Future Combat Systems Contract Grows to Over $41 Million,” Press
Release Parna Sarkar May 31, 2005. Retrieved July 2007
http://www.irobot.com/sp.cfm?pageid=86&id=147&referrer=85.

26. “Boeing and SAIC Award Honeywell Contract to Develop Future Combat System
Class I Unmanned Aerial Vehicles,” Press Release Mary McAdam May 24, 2006.
Retrieved August 2007
http://www.boeing.com/ids/news/2006/q2/060524a_nr.html.

27. “G Systems delivers NLOS-LS Test Set to Lockheed Martin” Press Release
Andrew Kahn, April 5, 2007. Retrieved July 2007
http://www.gsystems.com/industries/G%20Systems%20NLOS%20delivery_04_0
5_07.pdf.

28. “FCS Partner Selections” News Release 2003. Retrieved July 2007
http://www.boeing.com/news/releases/2003/q3/nr_030710m_list.html.

29. “C4ISR Architecture and tactical Systems Planning Tool” SITIS Archives.
Retrieved July. 2007
http://www.dodsbir.net/Sitis/archives_display_topic.asp?Bookmark=10830.

30. “Training Common Components” U.S. Army PEO STRI. Retrieved July 2007
http://www.peostri.army.mil/PRODUCTS/TCC/.

31. “Ada Joint Programming Office Mission Accomplished, 1980-1998 FAQ”
Retrieved July 2007 http://sw-eng.falls-church.va.us/AdaIC/.

32. “F-22 Software Risk Reduction,” STSC, CrossTalk Beverly L. Moody, F-22
Avionics Software Block lead, May 2000. Retrieved June 2007
http://www.stsc.hill.af.mil/Crosstalk/2000/05/moody.html.

 70

33. “F/A-22 Program History” Retrieved July 2007 http://www.f-

22raptor.com/index_airframe.php#1992\.

34. Murphy’s Law article April 2, 2004. Retrieved June 2007
http://www.strategypage.com/htmw/htmurph/articles/20040402.aspx.

35. “Tactical Aircraft: DOD Should present a New F-22A Business Case before
Making Further Investments,” David M. Walker, Comptroller General of the U.S.
June 20, 2006 Retrieved July 2007
http://www.cdi.org/pdfs/GAO%20on%20F%2022%20per%20June%202006.pdf.

36. “Stryker 8-Wheel Drive Armored Combat Vehicles” Army-technology.com,
retrieved July 2007 http://www.army-technology.com/projects/stryker/.

37. “Land Combat Systems Industry Report Academic Year 2002-2003” LTC
Michael E. Donovan et al. Retrieved July 2007
http://www.ndu.edu/icaf/industry/IS2003/papers/2003%20Land%20Combat%20S
ystems.htm.

 71

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Commanding General, Training and Education Command
MCCDC, Code C46
Quantico, Virginia

4. Director, Marine Corps Research Center
MCCDC, Code C40RC
Quantico, Virginia

5. Marine Corps Tactical Systems Support Activity
(Attn: Operations Officer)
Camp Pendleton, California

6. Director, Operations Analysis Division
Code C19, MCCDC
Quantico, Virginia

7. Marine Corps Representative
Naval Postgraduate School
Monterey, California

8. MCCDC OAD Liaison to Operations Research Department
Naval Postgraduate School
Monterey, California

9. Walt Cooper
OSD, PA&E/CAIG
The Pentagon, 2D278

10. Tom Ogilvy
Army G-4, Resource Integration Division
The Pentagon, 1D343-16

